翻訳と辞書
Words near each other
・ Mathison
・ Mathisson–Papapetrou–Dixon equations
・ Mathiston, Mississippi
・ Mathiura BL High School
・ Mathiura Union
・ Mathiveri (Alif Alif Atoll)
・ Mathiya
・ Mathieu Traversy
・ Mathieu Trésarrieu
・ Mathieu Turcotte
・ Mathieu Turgeon
・ Mathieu Valbuena
・ Mathieu Valverde
・ Mathieu van der Poel
・ Mathieu Voyemant
Mathieu wavelet
・ Mathieu Wilson
・ Mathieu Wojciechowski
・ Mathieu, Calvados
・ Mathieu-Richard-Auguste Henrion
・ Mathieua
・ Mathiga
・ Mathighatta
・ Mathigiri
・ Mathihalli
・ Mathijs Bouman
・ Mathijs Heyligers
・ Mathijsen
・ Mathikere
・ Mathikettan Shola National Park


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mathieu wavelet : ウィキペディア英語版
Mathieu wavelet
The Mathieu equation is a linear second-order differential equation with periodic coefficients. The French mathematician, E. Léonard Mathieu, first introduced this family of differential equations, nowadays termed Mathieu equations, in his “Memoir on vibrations of an elliptic membrane” in 1868. "Mathieu functions are applicable to a wide variety of physical phenomena, e.g., diffraction, amplitude distortion, inverted pendulum, stability of a floating body, radio frequency quadrupole, and vibration in a medium with modulated density"〔L. Ruby, “Applications of the Mathieu Equation,” Am. J. of Physics, vol. 64, pp. 39–44, Jan. 1996〕
== Elliptic-cylinder wavelets ==

This is a wide family of wavelet system that provides a multiresolution analysis. The magnitude of the detail and smoothing filters corresponds to first-kind Mathieu functions with odd characteristic exponent. The number of notches of these filters can be easily designed by choosing the characteristic exponent. Elliptic-cylinder wavelets derived by this method 〔M.M.S. Lira, H.M. de Oiveira, R.J.S. Cintra. Elliptic-Cylindrical Wavelets: The Mathieu Wavelets,''IEEE Signal Processing Letters'', vol.11, n.1, January, pp. 52–55, 2004.〕 possess potential application in the fields of optics and electromagnetism due to its symmetry.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Mathieu wavelet」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.